1. Solve the equation $3 = 8^x$ to the nearest hundredths.

Graph
$$y=8\times7$$
 Calculate
 $y=3$ 5 Intersection

$$\chi = 0.53$$

2. Write the equation of a circle that has a center at (-3,5) and a point on the circle at (0,5). Graph the circle and its inverse.

3. Dana's mother gave her \$175 for her sixteenth birthday, requiring her to put the money into her savings account until her eighteenth birthday. Dana already has \$237.54 in her account, which pays 3.25% interest, compounded quarterly. How much will Dana have in the account on her eighteenth birthday assuming she makes no deposits or withdrawals?

4. Let $f(x) = \frac{4}{5}x + 1$ and $g(x) = \frac{5}{4}x - \frac{5}{4}$. Are f(x) and g(x) inverses of one another?

Prove your answer using composites.

$$f(g(x)) = \frac{4}{5}(\frac{5}{4}x - \frac{5}{4}) + 1$$

= $X - 1 + 1$
= X

$$g(f(x)) = \frac{5}{7}(\frac{4}{5}x+1) - \frac{5}{4}$$

$$= x + \frac{5}{4} - \frac{5}{4}$$

$$= x$$

f(x) and g(x) are inverses because f(g(x)) = g(f(x)) = x

5. If $2^{x+4} = 4^{3x-1}$, what is the value of x?

$$2^{X+4} = 2^{3(3X-1)}$$

 $2^{X+4} = 2^{3(3X-1)}$
 $2^{X+4} = 2^{3(3X-1)}$

- 6. Laura and Robert each have their own personal function machine. Laura's machine, L(x), squares the input and then subtracts one. Robert's function machine, R(x), adds 2 to the input and then multiples the result by three.
 - a. Write the equations that represent L(x) and R(x).

$$L(x)=x^2-1 \qquad R(x)=3(x+2)$$

b. Laura and Robert decide to connect their two machines so that Laura's output becomes Robert's input. If 3 is the initial input, what is the final output?

$$R(L(3)) = R(8) = 30$$

c. What if they switch the order of the machines? Would they get the same result? 100 Justify your answer.

$$L(R(3)) = L(15) = 224$$

Switching the order only works if L(x) +R(x) are inverses

Find the inverse of each of the following functions algebraically.

7.
$$y = 16(x - 8)^{2} + 3$$

 $16(y-8)^{2} + 3 = X$
 $(y-8)^{2} = \frac{X-3}{16}$
 $y-8 = \pm \frac{1}{16}$
 $y = 8 \pm \frac{1}{4}$
9. $y = \sqrt{5x - 6} + 1$
 $\sqrt{5y-6} + 1 = X$

 $5y-6 = (X-1)^2$

 $y = (x-1)^2 + 6$

8.
$$y = (\frac{1}{4}x + 6)^{3}$$

 $(\frac{1}{4}y + 6)^{3} = X$
 $4y + 6 = 3\sqrt{X}$
 $y = 4(3\sqrt{X} - 6)$
 $= 43\sqrt{X} - 24$
10. $y = \frac{2}{x+1} - 7$
 $\frac{2}{y+1} - 7 = X$
 $\frac{2}{y+1} = \frac{2}{x+1}(\frac{y+1}{y+1})$
 $2 = (x+7)(y+1)$
 $\frac{2}{x+7} = y+1$ $y = \frac{2}{x+1} - 1$

- 14-X

 $= \frac{18-4-\times \cdot 1/3}{9}$

F(4)= 2-(4)

11. Let
$$f(x) = \frac{2-x}{3}$$
. Find $f(f(f(x)))$

$$f(f(x)) = \frac{2-\frac{2-x}{3}}{3}$$

$$= \frac{6-2+x}{3} \cdot \frac{1}{3}$$

$$= \frac{4+x}{9}$$

For #12 - 14, let
$$f(x) = \frac{1}{4x^2 - 9}$$
 and $g(x) = -2x - 4$

12. a. Evaluate
$$f(g(3))$$

$$g(3) = -6-4 = -10$$

$$f(-10) = \frac{1}{4(100)-9}$$

$$f(g(3)) = \frac{1}{391}$$

13. Find an expression for
$$f(g(x))$$
.

$$= \frac{1}{4(-2x-4)^2-9}$$

$$= \frac{1}{4(4x^2+16x+16)-9}$$

$$= \frac{1}{16x^2+16x+16}$$

b. Evaluate
$$g\left(f\left(\frac{-1}{2}\right)\right)$$
 $f(-\frac{1}{2}) = \frac{1}{4(\frac{1}{4})-9} = \frac{-1}{8}$
 $g(-\frac{1}{8}) = -2(-\frac{1}{8})-4 = \frac{1}{4}-4$
 $g(f(-\frac{1}{2})) = -\frac{15}{4}$

Find an expression for
$$f(g(x))$$
.

14. State the domain restrictions for $f(g(x))$.

$$\frac{1}{4(-2x-4)^2-9} = \frac{1}{4(-2x-4)^2-9} = \frac{1}{$$

15. Write the equation of exponential function whose graph contains the points (2, 24) and (4, 432).

$$\frac{+43a=ab^{4}}{24=ab^{2}}$$

$$\frac{-18=b^{2}}{3\sqrt{2}=b}$$

$$24 = a(312)^{4}$$

 $24 = 18a$
 $\frac{4}{3} = a$

16. Caesium – 137 is a radioactive isotope formed by a nuclear reactor during its operation. During the Chernobyl disaster in 1986, 500 grams were found in a closed lake in the Ukraine. The half-life period of Caesium – 137 is 30.17 years.

a. How many grams are still remaining today?

$$A = 500(\frac{1}{2})^{\frac{t}{30.17}} \quad \begin{array}{c} 3018 \\ y = 500(\frac{t}{2})^{\frac{33}{30.17}} \end{array} \quad \begin{array}{c} 3019 \\ y = 500(\frac{t}{2})^{\frac{33}{30.17}} \end{array}$$

$$y = 500(3)$$

$$= 239.7/grams$$

$$= 334.26grams$$

b. How many years will it take for there to be less than 5 grams? Write down the steps you used to find the

$$y=5$$
 $y=500(.5)^{\frac{3}{30.17}}$

Graph

Calculate

Intersection

It will take 201 years for there to be less than 5 grams,

Simplify the following expressions.

17.
$$\left(729^{\frac{4}{3}}\right)^{\frac{5}{8}}$$

$$= \left(6561\right)^{\frac{5}{8}}$$

$$= 243$$

19.
$$\left(x^{\frac{3}{4}} \div x^{\frac{7}{8}}\right) \cdot x^{\frac{-1}{6}}$$

$$= \left(x^{\frac{3}{4}} \div x^{\frac{7}{4}}\right) \cdot$$

18.
$$\left(\frac{2187}{16,384}\right)^{\frac{4}{7}} \cdot \left(\frac{4096}{5832}\right)^{\frac{2}{3}}$$

$$= \frac{81}{356} \cdot \frac{356}{3344}$$

$$= \frac{81}{384}$$

$$= \frac{4}{384}$$

$$20. \left(\frac{x^{\frac{1}{4}}y^{-2}}{x^{\frac{1}{2}}y^{\frac{1}{4}}} \right)^{\frac{-2}{3}} \cdot x^{-3}$$

$$= \left(\frac{x^{\frac{1}{4}}y^{-2}}{y^{\frac{1}{4}}} \right)^{\frac{-2}{3}} = \left(\frac{y^{\frac{3}{4}}}{x^{\frac{1}{2}}} \cdot \chi^{-3} \right)^{-2}$$

$$= \left(\frac{x^{\frac{1}{4}}y^{-2}}{y^{\frac{1}{4}}} \right)^{\frac{-2}{3}} = \left(\frac{y^{\frac{3}{4}}}{x^{\frac{1}{4}}} \cdot \chi^{-3} \right)^{-2}$$

$$= \left(\frac{x^{\frac{1}{4}}y^{-2}}{y^{\frac{1}{4}}} \right)^{\frac{-2}{3}} = \left(\frac{y^{\frac{3}{4}}}{x^{\frac{1}{4}}} \cdot \chi^{-3} \right)^{-2}$$

$$= \left(\frac{x^{\frac{1}{4}}y^{-2}}{y^{\frac{1}{4}}} \right)^{\frac{-2}{3}} = \left(\frac{y^{\frac{3}{4}}}{x^{\frac{1}{4}}} \cdot \chi^{-3} \right)^{-2}$$

$$= \left(\frac{x^{\frac{1}{4}}y^{-2}}{y^{\frac{1}{4}}} \right)^{\frac{-2}{3}} = \left(\frac{y^{\frac{3}{4}}}{x^{\frac{1}{4}}} \cdot \chi^{-3} \right)^{-2}$$

$$= \left(\frac{x^{\frac{1}{4}}y^{-2}}{y^{\frac{1}{4}}} \right)^{\frac{-2}{3}} = \left(\frac{x^{\frac{1}{4}}y^{-2}}{x^{\frac{1}{4}}} \cdot \chi^{-3} \right)^{-2}$$

$$= \left(\frac{x^{\frac{1}{4}}y^{-2}}{y^{\frac{1}{4}}} \right)^{\frac{-2}{3}} = \left(\frac{x^{\frac{1}{4}}y^{-2}}{x^{\frac{1}{4}}} \cdot \chi^{-3} \right)^{-2}$$

$$= \left(\frac{x^{\frac{1}{4}}y^{-2}}{x^{\frac{1}{4}}} \right)^{\frac{-2}{3}} = \left(\frac{x^{\frac{1}{4}}y^{-2}}{x^{\frac{1}{4}}} \cdot \chi^{-3} \right)^{-2}$$

$$= \left(\frac{x^{\frac{1}{4}}y^{-2}}{x^{\frac{1}{4}}} \right)^{\frac{-2}{3}} = \left(\frac{x^{\frac{1}{4}}y^{-2}}{x^{\frac{1}{4}}} \right)^{\frac{1}{4}} = \left(\frac{x^{\frac{1}{4}}y^{-2}}{x^{\frac{1}{4}}} \right)$$